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Abstract. We study the nonclassical properties and algebraic characteristics of the negative binomial states
introduced by Barnett recently. The ladder operator formalism and displacement operator formalism of the
negative binomial states are found and the algebra involved turns out to be the SU(1, 1) Lie algebra via
the generalized Holstein-Primarkoff realization. These states are essentially Perelomov’s SU(1, 1) coherent
states. We reveal their connection with the geometric states and find that they are excited geometric
states. As intermediate states, they interpolate between the number states and geometric states. We also
point out that they can be recognized as the nonlinear coherent states. Their nonclassical properties, such
as sub-Poissonian distribution and squeezing effect are discussed. The quasiprobability distributions in
phase space, namely the Q and Wigner functions, are studied in detail. We also propose two methods of
generation of the negative binomial states.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 32.80.Pj Optical cooling of atoms; trapping

1 Introduction

Since Stoler et al. introduced the binomial states (BSs) [1],
the so-called intermediate states have attracted consider-
able attention of physicists in the field of quantum optics.
A feature of these states is that they interpolate between
two fundamental quantum states, such as the number, co-
herent and squeezed states, and reduce to them in two dif-
ferent limits. For instance, the BSs interpolate between the
coherent states (the most classical) and the number states
(the most nonclassical) [1–6], while the negative binomial
states (NBSs) interpolate between the coherent states and
geometric states [7–11]. Another feature of some interme-
diate states is that their photon number distributions are
some famous discrete probability distributions in proba-
bility theory: the BS corresponds to the binomial distribu-
tion, the NBS to the negative binomial distribution, the
hypergeometric state [12] to the hypergeometric distribu-
tion, and the negative hypergeometric state [13] to the
negative hypergeometric distribution.

Recently Barnett introduced a new definition of
NBS [14],

|η,M〉 =
∞∑

n=M

Cn(η,M)|n〉

=
∞∑

n=M

[(
n

M

)
ηM+1(1− η)n−M

]1/2

|n〉, (1)
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where |n〉 is the usual number state, 0 < η ≤ 1 and M is a
non-negative integer. They find that the NBS |η,M〉 and
the BS have similar properties if the roles of the creation
operator a† and annihilation operator a are interchanged.
The photon number probability |Cn(η,M)|2 is associated
with the probability that n photons were present given
that M are found and that the probability for success-
fully detecting any single photon is η. Mixed states with
the photon number probability include those applicable to
photodetection and optical amplification [15].

The BS is a intermediate number-coherent state and
the original NBS is a intermediate geometric-coherent
state. One question naturally arises that if there exist an
intermediate state which interpolates between the num-
ber and geometric state. In reality, the new NBS is just
the intermediate number-geometric state. This fact will
be seen in the next section. Thus, we have three interme-
diate states which interpolate between two of the three
fundamental states (the number, coherent and geometric
states).

In the present paper we shall study the nonclassical
properties and algebraic characteristics of the new NBS.
The ladder operator formalism, displacement operator for-
malism and related algebraic structure will be formulated
in Section 2. It is interesting that the algebraic structure
is the SU(1, 1) Lie algebra via the generalized Holstein-
Primarkoff realization. In Section 3, we will show that
the NBS can be viewed as excited geometric states, inter-
mediate number-geometric states and nonlinear coherent
states. The nonclassical properties, such as sub-Poissonian
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distribution and squeezing effect will be investigated in de-
tail in Section 4. The Q and Wigner functions are studied
in Section 5 and the two methods of generation of the
NBS are proposed in Section 6. A conclusion is given in
Section 7.

2 Ladder operator formalism, displacement
operator formalism and algebraic structure
of the new NBS

2.1 Ladder operator formalism and algebraic structure

It is known that the BSs are special SU(2) coherent states
[5,6] and the original NBSs are Perelomov’s SU(1, 1) co-
herent states [11] via the standard Holstein-Primakoff re-
alizations. So we expect that the algebra involved in the
new NBS is SU(1, 1) Lie algebra.

It is easy to evaluate that

a†n|η,M〉 =
[

(M + n)!
M !ηn

]1/2

|η,M + n〉. (2)

In particular, for n = 1, we get

a†|η,M〉 =
(
M + 1
η

)1/2

|η,M + 1〉. (3)

The creation operator raises the NBS |η,M〉 to |η,
M + 1〉. This property is similar to the action of the cre-
ation operator on the Fock state |M〉,

a†|M〉 =
√
M + 1|M + 1〉. (4)

Actually, in the limit of η → 1, the NBS |η,M〉− reduces to
the number state |M〉 and equation (3) naturally reduces
to equation (4).

The key and interesting point is that there exists an-
other operator

√
N̂ −M which also raises the NBS |η,M〉

to |η,M + 1〉. From equation (1), the following equation
is directly derived as√

N̂ −M |η,M〉 =
(

1− η
η

)1/2√
M + 1|η,M + 1〉. (5)

Comparing equation (3) and equation (5), we get√
N̂ −M |η,M〉 =

√
1− ηa†|η,M〉. (6)

Multiplying the both sides of the above equation by the
operator

√
N̂ −M from left, we obtain the ladder opera-

tor formalism of the NBS as

(N̂ −
√

1− η
√
N̂ −Ma†)|η,M〉 = M |η,M〉. (7)

In the limit of η → 1, we find that the NBS|η,M〉 reduces
to the number state |M〉 and equation (7) to the equation
N̂ |M〉 = M |M〉 as expected.

It can be proved that the operators appearing in equa-
tion (7) can form SU(1, 1) Lie algebra:

K0 =N̂ − M − 1
2

, K+ =
√
N̂ −Ma†, K−=a

√
N̂ −M.

(8)

Reminding of the standard Holstein-Primarkoff realiza-
tion of SU(1, 1) Liealgebra, J0 = N̂ + M/2, J+ =√
M + N̂ − 1a†, J− = a

√
M + N̂ − 1, we call the new

realization as generalized Holstein-Primakoff realization.
To our knowledge, the new realization of SU(1, 1) Lie al-
gebra seems not to be addressed in the literature.

In terms of the generators K0,K+ and K− of the
SU(1, 1) Lie algebra, equation (7) is rewritten as

(K0 −
√

1− ηK+)|η,M〉 =
M + 1

2
|η,M〉. (9)

2.2 Displacement operator formalism

Now we try to find the displacement operator formalism
of the NBS. To this end, let us rewrite the NBS as

|η,M〉 = η
M+1

2

∞∑
n=0

[(
M + n

M

)
(1− η)n

]1/2

|M + n〉

= η
M+1

2

∞∑
n=0

(
√

1− ηa†)n√
n!

|M〉. (10)

Then by making use of the following identity

[f(N̂)a†]n = a†nf(N̂ + n)f(N̂ + n− 1)...f(N̂ + 1),
(11)

Equation (10) can be written in the exponential form

|η,M〉 = η
M+1

2 e
√

1−ηK+ |M〉. (12)

Note that K−|M〉 = 0, then the displacement operator
formalism is obtained as

|η,M〉 = e
√

1−ηK+ηK0e−
√

1−ηK− |M〉
= eξ(K+−K−)|M〉, (13)

where ξ = arctanh
√

1− η. In the derivation of the above
equation, we have used the identity

eαK+−α∗K− = eγK+(1− |γ|2)K0e−γ
∗K− , (14)

where γ = α tanh |α|/|α|. As seen from equation (13), the
NBS can be simply recognized as SU(1, 1) displaced num-
ber states. Actually, the NBS are essentially Perelomov’s
coherent states as shown below.

On the space

S = span {|n+M〉 ≡ |n; k〉|n = 0, 1, 2...} ,

k =
M + 1

2
(15)
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we have

K+|n; k〉 =
√

(n+ 1)(2k + n)|n+ 1; k〉,
K−|n; k〉 =

√
n(2k + n− 1)|n− 1; k〉,

K0|n; k〉 = (n+ k)|n; k〉. (16)

This is the discrete representation of SU(1, 1) Lie alge-
bra with Bargaman index k = (M + 1)/2. We see that
the generalized Holstein-Primakoff realization gives rise to
the representation of SU(1, 1) on the space S. Note that
|M〉 = |0; k〉, the NBS can be written as

|η,M〉 = eξ(K+−K−)|0; k〉. (17)

This shows the NBS are essentially Perelomov’s coherent
states.

3 The NBS as excited geometric state,
intermediate number-geometric state
and nonlinear coherent state

3.1 As excited geometric states and intermediate
number-geometric states

From equation (10) we obtain

|η,M〉 = η(M+1)/2
∞∑
n=0

(
M + n

M

)1/2

(1− η)n/2|M + n〉

=
η(M+1)/2

√
M !

a†M
∞∑
n=0

(1− η)n/2|n〉

=
ηM/2√
M !

a†M |η〉g, (18)

where

|η〉g = η1/2
∞∑
n=0

(1− η)n/2|n〉 (19)

is the geometric state [16–21], which is also called
Susskind-Glogower phase state [11], phase eigenstate
[16,17], and coherent phase state [19]. The photon num-
ber distribution is η(1 − η)n, the geometric distribution.
From equation (18) the NBSs can be generated by re-
peated application of the creation operator a† on the ge-
ometric states. This shows that the NBS belongs to an
interesting class of nonclassical states, excited quantum
states. These states are first introduced by Agarwal and
Tara as excited coherent states [22]. So the NBSs can be
viewed as excited geometric states.

Setting M = 0 in equation (18), we get

|η, 0〉 = |η〉g, (20)

which shows that the NBS reduces to the geometric states
forM = 0. Note that the NBS reduces to the number state
|M〉 in the limit of η → 1. Thus, the NBS interpolates
between the number state and geometric state and can be
viewed as number-geometric state.

3.2 As nonlinear coherent states

The geometric states are the eigenstates of the Susskind-
Glogower phase operator [23] (1 + N)1/2a, obeying the
equation

(N + 1)−1/2a|η〉g =
√

1− η|η〉g. (21)

Comparing with the definition of the nonlinear coherent
states|α〉nl [24,25]

f(N)a|α〉nl = α|α〉nl, (22)

we know that the geometric states are nonlinear coherent
states with the nonlinear function f(N) = (N + 1)−1/2.

In a previous work, we have proved a general result
that the excited nonlinear coherent states are still non-
linear coherent states [26]. Since the geometric states are
nonlinear coherent states and the NBSs can be recognized
as excited geometric states, we infer that the NBSs are
nonlinear coherent states. In fact, multiplying equation (7)
by the annihilation operator a from the left, we get

(N + 1−M)a|η,M〉 =√
1− η

√
N + 1−M(1 +N)|η,M〉. (23)

Since we discuss the problem in the space S (Eq. (15)),
we can multiply equation (23) by 1/[(1+N)

√
N + 1−M ]

from left. This leads to

[
√
N + 1−M/(N + 1)]a|η,M〉 =

√
1− η|η,M〉. (24)

The above equation shows that the NBS are non-
linear coherent states with the nonlinear function√
N + 1−M/(N + 1). Equation (24) naturally reduces

to equation (21) for M = 0.

4 Nonclassical properties

4.1 Sub-Poissonian distribution

The simplest way to investigate the statistical characteris-
tics of the radiation field is to differentiate the generation
function

G(λ) =
∞∑
n=0

P (n)λn = λM
(

η

1 + λη − λ

)M+1

(25)

with respect to the auxiliary real number λ. Here P (n) =
|Cn(η,M)|2 is the photon distribution function of the
NBS. The factorial moments are defined as F (n) =
dnG/dλn|λ=1. From equation (25) we obtain the factorial
moments F (1) and F (2) as

F (1) = 〈N〉 =
M + 1
η
− 1, (26)

F (2) = 〈N2〉 − 〈N〉

=
(M + 2)(M + 1)

η2
− 4

M + 1
η

+ 2. (27)
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Then we can easily derive Mandel’s Q parameter

Q =
〈N2〉 − 〈N〉2 − 〈N〉

〈N〉

=
F (2)− F 2(1)

F (1)
=
η2 − 2(M + 1)η +M + 1

η(M + 1− η)
, (28)

which measures the deviation from the Poisson distribu-
tion which corresponds to the coherent state withQ = 0. If
Q < 0 (> 0), the field is called sub(super)-Poissonian. The
denominator of equation (28) is positive since η ≤ 1, while
the numerator can be positive or negative. For M = 0,
Q = (1 − η)/η ≥ 0. The NBS |η, 0〉 (geometric state) is
super-Poissonian except η = 1. For M > 0, the condition
for the numerator η2 − 2η(M + 1) +M + 1 < 0 is

η > η− = M + 1−
√
M(M + 1). (29)

It can be proved that 0 < η− < 1. Thus the NBS
|η,M〉−(M > 0) is super-Poissonian when η < η− and
sub-Poissonian when η > η−. As M increases, η− de-
creases and the sub-Poissonian range increases.

4.2 Squeezing effect

Define the quadrature operators X (coordinate) and Y
(momentum) by

X =
1
2

(a+ a†), Y =
1
2i

(a− a†). (30)

Then their variances

Var(X) = 〈X2〉 − 〈X〉2, 〈Var(Y ) = 〈Y 2〉 − 〈Y 〉2 (31)

obey the Heisenberg’s uncertainty relation

Var(X)Var(Y ) ≥ 1
16
· (32)

If one of the Var(X) and Var(Y ) is less than 1/4, the
squeezing occurs. In the present case, 〈a〉 and 〈a2〉 are
real. Thus, the variances of X and Y can be written as

Var(X) =
1
4

+
1
2

(〈a†a〉+ 〈a2〉 − 2〈a〉2), (33)

Var(Y ) =
1
4

+
1
2

(〈a†a〉 − 〈a2〉). (34)

From equation (2), the expectation values 〈a〉 and 〈a2〉 are
obtained as

〈a〉 = ηM+1(1− η)−M
∞∑

n=M

(
n+ 1
M

)1/2(
n

M

)1/2

×(1− η)n+1/2(n+ 1)1/2 (35)

〈a2〉 = ηM+1(1− η)−M
∞∑

n=M

(
n+ 2
M

)1/2(
n

M

)1/2

×(1− η)n+1[(n+ 2)(n+ 1)]1/2 (36)

(c)

(b)
(a)
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1η
Fig. 1. The variance of the quatrature X as a function η for
different values of M : (a) M = 5, (b) M = 10, and (c) M = 35.

(c)(b)(a)
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0.4

0.6

0.8

1

Var(p)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1η
Fig. 2. The variance of the quatrature Y as a function η for
different values of M : (a) M = 5, (b) M = 20, and (c) M = 40.

Using equations (26, 33–36), we can investigate the
squeezing effect.

By numerical calculations, we find that the squeezing
occurs in both the quadrature X and Y . Figure 1 gives
the variance of the quadrature X versus η for different
M . It can be seen that the range and degree of squeezing
increase as M increases. There exists a critical value of M .
When M < 7, there is no squeezing for arbitrary values of
η. The squeezing also occurs in the quadrature Y as shown
in Figure 2. In contrary to the squeezing in the quadrature
X , the range and degree decrease as M increases. When
M is larger than a critical value 31, no squeezing occurs.
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Fig. 3. Q function of a NBS for four values of η: (a) η = 0.3, (b) η = 0.5, (c) η = 0.9, and (d) η = 1. In all cases M = 5.

5 The Q and Wigner functions

If a field is prepared in a quantum state described by
a density operator ρ, we can define the s-parameterized
quasiprobability distribution in phase space as [27]

P (β, s) =
1
π2

∫
d2ξC(ξ; s) exp(βξ∗ − β∗ξ), (37)

where the quantum characteristic function is

C(ξ, s) = Tr[D(ξ)ρ] exp(s|ξ|2/2). (38)

Here β = x + iy, with (x, y) being the c numbers
corresponding to the quadratures (X,Y ), and D(ξ) =
exp(ξa† − ξ∗a) is Glauber’s displacement operator. It is
possible to write the s-parameterized quasiprobability dis-
tribution as a infinite series [28]

P (β, s) =
2
π

∞∑
n=0

(−1)k
(1 + s)k

(1− s)k+1
〈β, k|ρ|β, k〉, (39)

where |β, k〉 = D(β)|k〉 is the so-called displaced number
state.

5.1 Q function

If we take s = −1, equation (39) is reduced to the familiar
expression for the Q function

Q(β) =
1
π
〈β|ρ|β〉. (40)

Note that since the NBS can be viewed as an excited ge-
ometric state (see Eq. (18)), we obtain the Q function of
the NBS as

Q(β) = ηM+1 exp(−|β|2)|β|2M

×
∣∣∣∣∣
∞∑
n=0

βn(1− η)n/2/
√
n!

∣∣∣∣∣
2

/M ! (41)

In Figure 3 we present plots of the Q function of a NBS
for different values of η and M = 5. We can clearly see
the deformation of the Q function. When η = 1, the Q
function representing the number state |M = 5〉 is formed
(Fig. 3d) as expected. From the Q function we can also
study the squeezing effects by examining the deformation
of their contours. Figure 4 is the contour plot of the Q
functions of two particular NBSs, with (a) η = 0.2,M = 5
and (b) η = 0.85,M = 50. We can clearly see the com-
pression along the y- and x-direction, which corresponds
to squeezing in the Y quadrature of the first NBS and in
the X quadrature of the second.

5.2 Wigner function

By taking s = 0 in equation (39), we obtain a series rep-
resentation for the Wigner function

W (β) =
2
π

∞∑
k=0

(−1)k〈β, k|ρ|β, k〉. (42)
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Fig. 4. Contours of the Q function of two NSBs with (a) η =
0.2, M = 5, and (b) η = 0.85, M = 50.

Now we insert equation (1) into the above equation, which
yields

W (β) =
2
π

∞∑
k=0

∣∣∣∣∣
∞∑

n=M

Cn(η,M)χnk(β)

∣∣∣∣∣
2

. (43)

In the expression above, the matrix elements χnk(β) =
〈n|D(β)|k〉 are given by [29]

χnk(β) = βn(−β∗)k exp(−|β|2/2)

× 2F0(−n,−k; |β|−2)/
√
n!k!, (44)

where 2F0(α, β; z) are the generalized hypergeometric
functions [30]. The present form of χnk(β) is convenient
for numerical calculations.

The Wigner function can be used to trace the nonclas-
sical behaviors of quantum states. It is known that the
negativity of the Wigner function is a sufficient but not
necessary condition for having nonclassical effects. In Fig-
ure 5 we give plots of the Wigner function of a NBS by
numerical calculations of equation (43) for different val-
ues of η and M = 1. As in Figure 5a, the negative part
of the Wigner function is already noticeable for η = 0.3.
For η = 0.5 (Fig. 5b), the negative part is pronounced. In
Figure 5c, for η = 0.9, the negative part is even larger, and
finally, in Figure 5d, we have the full Wigner function of
a number state |1〉 (η = 1). The Wigner function becomes
more and more negative as η increases.

6 Generation of the new NBS

Let us discuss the dynamical generation of the NBS. We
consider two different methods. The first is quite straight-
forward in concept from the displacement operator for-
malism (Eq. (13)) but might not be very easy to achieve

experimentally. The Hamiltonian is given by

H = H0 + iχ[
√
N̂ −Ma† exp(−iωt)

−a
√
N̂ −M exp(iωt)]

H0 = ωa†a. (45)

The constant χ is the coupling strength. The cou-
pling is of intensity-dependent type and is similar
to those in some intensity-dependent Jaynes-Cummings
models [31–34]. The unitary time evolution operator in
the interaction picture is

U(t) = exp[χt(
√
N̂ −Ma† − a

√
N̂ −M)]. (46)

Supposing the system is initially prepared in the number
state |M〉, we find the system at time t is the NBS

U(t)|M〉 = |1− tanh2(χt),M〉. (47)

The second method of the generation of the NBS is
based on the fact that the NBS is the excited geomet-
ric state. The geometric state can be prepared in the
non-degenerate three-wave interaction system [35]. We can
also generate the geometric state by the non-degenerate
parametric amplifier described by the two-mode Hamilto-
nian [36]

H̃ = H̃0 + iχ[a†1a
†
2 exp(−2iωt)− a1a2 exp(2iωt)],

H̃0 = ω1a
†
1a1 + ω2a

†
2a2, (48)

where a1 and ω1 (a2 and ω2) are the annihilation operator
and frequency for the signal (idler) mode. Frequencies ω1

and ω2 sum to the pump frequency, 2ω = ω1 + ω2. The
coupling constant χ is proportional to the second-order
susceptibility of the medium and to the amplitude of the
pump. The unitary time evolution operator in the inter-
action picture is

Ũ(t) = exp[χt(a†1a
†
2 − a1a2)]. (49)

Suppose that the system is initially prepared in the state
|0, 0〉 = |0〉1 ⊗ |0〉2. Then at any time t the system is in
the state

|η〉tm = Ũ(t)|0, 0〉 = η1/2
∞∑
n=0

(1− η)n/2|n, n〉 (50)

which is the two-mode geometric state in comparison with
equation (19). Here η = 1− tanh2(χt).

Once the two-mode geometric state is prepared, one
can generate two-mode NBS by the following procedure
in analogy to that proposed by Agawal and Tara [22].
Consider the passage of a two-level excited atom through
a cavity. Let the initial state of the atom-field system be
|η〉tm ⊗ |e〉, where |e〉 is the atomic excited state. The in-
teraction Hamiltonian has the form [37]

H̄ = ~(gS+a1 + g∗S−a†1), (51)
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Fig. 5. Wigner function of a NBS for four values of η: (a) η = 0.3, (b) η = 0.5, (c) η = 0.9, and (d) η = 1. In all cases M = 1.

where S± are the psedospin operators of the atom and g
is the coupling constant. Since g is generally small, the
state at time t can be approximated by

|ψ(t)〉 ≈ |η〉tm ⊗ |e〉 − ig∗ta†1|η〉tm ⊗ |g〉, (52)

which is valid for interaction times gt� 1. From the above
equation we observe that, if the atom is detected to be
in the ground state |g〉, then the state of the field is re-
duced to a†1|η〉tm. An extension of the above arguments
to the multiphoton processes would imply that the state
a†M1 |η〉tm can be produced in multiphoton processes. For
the multiphoton processes, the Hamiltonian (Eq. (51)) is
replaced by a new Hamiltonian with a1 → aM1 . Thus, the
above procedure for a multiphoton process will result in
the state

|η,M〉tm = η(M+1)/2
∞∑
n=0

(
M + n

M

)1/2

× (1− η)n/2|M + n, n〉. (53)

The above normalized state is just the two-mode NBS. In
a short summary two methods are proposed to generate
the NBS.

7 Conclusions

We have investigated the NBS induced recently by
Barnett and found the ladder operator formalism and dis-
placement operator formalism of the NBS. The algebra
involved is SU(1, 1) Lie algebra via the generalized
Holstein-Primakoff realization. We found that the NBS
are essentially Perelomov’s coherent states.

As excited quantum states, the NBSs are excited ge-
ometric states. As intermediate states, they interpolate
between the number and geometric states. According to
the definition of the nonlinear coherent states, we find that
the NBSs are nonlinear coherent states.

The NBS can be sub-Poissonian or super-Poissonian.
There exists a critical point η−. The NBS is sub-
Poissonian when η > η− and super-Poissonian when
η < η−. The squeezing occurs in both the quadrature X
and Y with two critical values of M = 7 and 31, respec-
tively. There is no squeezing occurs in the quadrature X
for M < 7 and in the quadrature Y for M > 31 for arbi-
trary values of η. The Q and Wigner functions are stud-
ied numerically. They show that the NBSs have prominent
nonclassical properties. We have proposed two methods of
generation of the new NBS.

In addition, the remarkable properties of the new NBS
seem to suggest that it deserves further attention from
both theoretical and application sides of quantum optics.
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